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 Cooperation and especially cross monitoring are critical in the cockpit notably under 
high workload and stressful conditions. Studying those behaviors and their associated mental 
states is crucial to understand team errors that can lead to incidents or accidents. Assessing 
those mental states objectively could allow designing a better training and potentially a better 
cockpit interface.  

Hence, we asked 20 participants (10 couples) to take part in an experiment that included a 
modified version of the MATB micro-world. EEG was recorded with a BioSemi 64 electrodes 
for each participant. Each couple performed 8 scenarios of 5mn each. Two levels of difficulty 
were modulated separately for each participant (Easy vs Hard). They were also asked either to 
cross-monitor and help their partner or not (control condition), resulting in a total of 8 possible 
conditions.  

A classifier was used to detect if we could discriminate those levels of workload for each 
participant and moreover if we could discriminate the cross-monitoring vs the control 
condition. To do so the classifier was trained with frequency features (theta to low beta) from 
2-sec epochs coming from each scenario. Each epoch was preprocessed independently with 
the Artifact Reconstruction Subspace algorithm.  

A subject-dependent 8-class shrinkage LDA was used with a One-Versus-The-Rest (OVR) 
strategy, with a 5-Fold cross-validation procedure. For an 8 class problem the theoretical 
threshold is 12.5%, interestingly an average of 44 % for the Pilot Flying and 42% for the pilot 
monitoring was reached. This study demonstrates that cross- monitoring and more generally 
cooperative behavior can be detected by EEG although more participants and more 
complementary analyses should be done.  
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Looking for neurophysiological correlates  

of brain-computer interface learning 

M-C. Corsi, M. Chavez, D. Schwartz, N. George, L. Hugueville, A. E. Kahn, S. Dupont, D. 

S. Bassett et F. De Vico Fallani. 

Non-invasive Brain-Computer Interfaces (BCIs) can exploit the ability of subjects to voluntary modulate their 
brain activity through mental imagery. Despite its clinical applications [1]-[2], controlling a BCI appears to 
require a skill acquisition that can last several weeks to reach relatively high-performance in control, without 
being sufficient for 15 to 30 % of the users [3], [4]. This gap has motivated a deeper understanding of 
mechanisms associated with motor imagery (MI) tasks [5]–[8].  
Twenty BCI-naive subjects (aged 27.45 ± 4.01 years, 12 men) participated to four BCI sessions each. Power 
spectra and imaginary coherence between each pair of region of interest in the source space were used to study 
respectively, the evolution of the activations and of the functional connectivity during the training from 
electroencephalographic signals.  
We found a progressive involvement of distributed sources in the cortical hemisphere contralateral to the 
movement corresponding to a significant power decrease (p < 0.025) within both a and b ranges that tended 
to focus more on the pre-and postcentral gyri at the end of the training. A progressive decrease of task-related 
connectivity in both a and b ranges across sessions was also observed. Power changes in a and b ranges 
significantly predicted the BCI accuracy in the next session (p < 0.005 in a2). The connectivity decrease in 
the frontal and the temporal areas was associated with a better future performance in a2.  
We elicited cortical changes associated with a dynamic brain reorganization during BCI training. These 
changes were characterized by an increase of the desynchronization rate and by a decrease of the connectivity 
that can be used as predictors of BCI performance. Taken together, our results offer insights into processes 
underlying BCI training.  

References  

. [1]  J. Jin et al., “The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces, emotion, 
and movement,” PloS One, vol. 7, no. 11, p. e49688, 2012.   

. [2]  G. Prasad, P. Herman, D. Coyle, S. McDonough, and J. Crosbie, “Applying a brain- computer interface to support motor 
imagery practice in people with stroke for upper limb recovery: a feasibility study,” J. Neuroengineering Rehabil., vol. 7, 
p. 60, Dec. 2010.   

. [3]  B. Z. Allison and C. Neuper, “Could Anyone Use a BCI?,” in Brain-Computer Interfaces, D. S. Tan and A. Nijholt, Eds. 
Springer London, 2010, pp. 35–54.   

. [4]  C. Vidaurre and B. Blankertz, “Towards a Cure for BCI Illiteracy,” Brain Topogr., vol. 23, no. 2, pp. 194–198, 2010.   

. [5]  S. Perdikis, L. Tonin, S. Saeedi, C. Schneider, and J. del R. Millán, “The Cybathlon BCI race: Successful longitudinal 
mutual learning with two tetraplegic users,” PLOS Biol., vol. 16, no. 5, p. e2003787, May 2018.   

. [6]  V. Kaiser et al., “Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS 
and EEG,” NeuroImage, vol. 85 Pt 1, pp. 432–444, Jan. 2014.   

. [7]  S. Perdikis, R. Leeb, and J. d R. Millán, “Subject-oriented training for motor imagery brain-  computer interfaces,” Conf 
Proc IEEE Eng Med Biol Soc, vol. 2014, pp. 1259–1262, 2014.   

. [8]  J. D. Wander et al., “Distributed cortical adaptation during learning of a brain–computer  interface task,” Proc Natl Acad 
Sci U A, vol. 110, no. 26, pp. 10818–10823, Jun. 2013.   

 



Transfer Learning between BCI datasets  

with different dimensions 

P.Rodrigues, M. Congedo, and C. Jutten  

 

 It is standard practice to consider that two BCI datasets recorded with different 
numbers of electrodes are not compatible between each other. This imposes substantial 
limitations for Transfer Learning applications, since it confines its use to data coming only 
from subjects in the same database. In this work, we propose a method that allows using data 
from a source dataset registered on m electrodes to classify data points of a target dataset 
with n electrodes (without loss of generality, we will consider that m > n).  

 Our proposal relies on the Riemannian geometry framework applied to BCI [1], where 
one uses spatial covariance matrices as statistical descriptors for EEG epochs. The data 
points from the source dataset live in Rm×m and those from the target dataset are in Rn×n. 
The method consists of two steps. Firstly, we construct an isometric transformation T that 
maps points from Rn×n to Rm×m to make all data points live in a space of the same 
dimension. Then, we use the Riemannian Procrustes Analysis (RPA) [2] to match the 
statistical distribution of the two datasets.  

 We apply our method on several BCI datasets (publicly available via [3]) and demon- 
strate its use for Transfer Learning between different databases in addition to the classical 
within-databases case.  
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P300-based interfaces are widely used in BCI because they allow a selection between many choices in a 
relatively short time. Recently, we motivated its use for attentional training in children with ADHD (Fouillen, 
Maby, Le Carrer, Herbillon, & Mattout, 2017). The aim of the current study was to evaluate the performance 
of healthy children playing three different calibration-free P300 BCI games (Figure 1). 19 children played all 
three games (about 20 trials each). We counterbalanced the order of the games over children. Children were 
choosing freely their targets, which they were instructed to focus. A remote eye-tracker was used to record 
the target location. EEG-based online selection relied on template signals learned from a previously acquired 
database in other children playing a single and different game. All tested children here performed the task 
significantly well. Offline analyses revealed no difference in performance between games. Transfer learning 
from one game to the others proved possible although one game appeared slightly less generalizable. 
Furthermore, all children underwent an inevitable drop of performance when comparing offline (individual) 
with online (template based) performance. Finally, offline ERP analyses revealed differences in the early 
(visual) components, which we relate to each game graphical specificity. In contrast, all games did involve a 
strong contribution of the P300 component, which is essential to support high attention-based control. We 
conclude that, although very different in terms of game play, all these games can be used as entertaining 
environments to train subjects how to control a P300 BCI. Moreover, as each of these games does involve a 
common process (voluntary selective attention) but also specific ones, they might prove more efficient if used 
in combination. Our results pertaining to the template evaluation also support the idea to use such games, 
without a calibration phase, in children with ADHD.  

 

 

 

 

 

 

Figure 1. Screenshots of the BCI games, in the absence of flashes (top panel) and during one flash (bottom panel)  

Fouillen, M., Maby, E., Le Carrer, L., Herbillon, V., & Mattout, J. (2017). ERP-based BCI training for children with ADHD: 
motivation and trial design. 7th Graz Brain-Computer Interface Conference 2017. https://doi.org/10.3217/978-3-85125-533-1-26  
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While overt and covert speech have been shown to share overlapping neural substrates, the 
understanding of the detailed ensemble dynamics of either form of speech production would 
prove useful to the development of an intracortical speech BCI. Broca’s area is a region of the 
inferior frontal gyrus of the dominant hemisphere known to play a major role in speech 
production. With the goal to study the neuronal activity of this area in relation to overt and 
covert speech, the intracortical activity of a neurosurgical patient was recorded using a Utah 
array implanted in the pars triangularis of the left hemisphere. The electrophysiological signals 
were recorded while the subject performed a task driven by cues on a screen. Each trial of the 
task consisted in reading aloud a sentence, repeating it aloud and finally repeating it covertly. 
Spike sorting applied to the signals of the 96 microelectrodes allowed to isolate 38 putative 
single units with stable activity on a portion of 33 consecutive trials. A model was trained to 
classify time samples between behavioral conditions (overt speech, covert speech and silence) 
using a relevant set of time-shifted firing rates, selected by a greedy approach. The model, 
evaluated by cross- validation, gave a classification accuracy above chance level, revealing 
that the neuronal activity was modulated according to these conditions. In particular, it was 
possible to classify inner speech intervals versus silence and overt intervals with more than 
70% accuracy, suggesting the existence of an ensemble activity specific to inner speech. 
Classification using the firing rate of individual units further showed that the modulated cells 
had a maximum discriminative power at given time shifts around speech production onset. 
Interestingly, the behavioral condition at a given time was most related to the past activity of 
some units and to the future activity of others.  
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Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) make use of brain signals produced during 
mental imagery tasks to control a computerized system. The current unreliability of MI-BCIs could be due, 
at least in part, to the use of inappropriate user-training procedures. In order to improve these procedures, it 
is necessary first to understand the mechanisms underlying MI-BCI user- training, notably through the 
identification of the factors influencing it. Thus, we aim at creating a statistical model that could 
explain/predict the mean performances of MI-BCI users using their traits (e.g., personality) but also the 
evolution of performances using demographic data (age, gender) and the timing of the experiment (time 
lapse between two sessions).  

We used the data of 42 participants collected from three different studies [1–3] that were based on the same 
MI-BCI paradigm. They were asked to learn to control an MI-BCI by performing three MI-tasks (i.e., left-
hand motor imagery, mental rotation and mental subtraction) across different training sessions (3 or 6 
depending on the experiment). We used a LASSO regression (Least Ab- solute Shrinkage and Selection 
Operator)[4] with a leave-one-subject-out cross validation to build different models.  

Our first results showed that using the users’ traits may only enable the pre- diction of performances within 
one multiple-session experiment, but might not be sufficient to reliably predict MI-BCI performances across 
experiments. In a second time, we were able to find a model gathering all the subjects that could predict the 
mean performance of a session using the participant’s gender, the timing of the experiment and the mean 
performance over the previous session (p < .01).  

Further studies considering, for instance, an estimation of the users’ states and new metrics to assess 
performances are necessary to reveal more reliable models of MI-BCI performances.  
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